Disorders in Amino Acid Metabolism Associated with Seizures

Document Type : Scientific Review

Authors

1 Department of Pediatrics, Islamic Azad University of Yazd, Yazd, Iran

2 General Practitioner, Babol University of Medical Sciences, Babol, Iran

3 Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 General Practitioner, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

5 Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

6 Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA

7 Department of Radiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

8 Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Seizures are a common presenting manifestation in children with amino acid metabolism disorders such as maple syrup urine disease (MSUD), nonketotic hyperglycinemia, sulfite oxidase deficiency, serine deficiency, and GABA-related disorders. In monoamine biosynthesis disorders, seizures are rare, but paroxysmal dystonia is often misdiagnosed as seizures. Metabolic changes, including amino acid turnover, have been noted during epileptogenesis and chronic epilepsy. Autophagy, a catabolic pathway crucial for maintaining tissue and organism homeostasis, is influenced by amino acids and plays a role in brain physiology and pathology, including epileptic disorders. Amino acid synthesis defects can cause neurological symptoms such as early-onset seizures, mental disability, and skin disorders. Besides neurological symptoms, amino acid metabolism disorders can impact other organ systems, resulting in various clinical manifestations. Early recognition and proper management of these disorders are vital for preventing long-term complications and enhancing patient outcomes. Ongoing research into the complex relationship between amino acid metabolism and neurological function may offer new insights into the pathogenesis of seizures and other neurological disorders.

Keywords


Corresponding Author: Kamran Alijanpour

View Orcid in Profile
You can search for this author in PubMed     Google Scholar Profile

  1. Almannai M, Al Mahmoud RA, Mekki M, El-Hattab AW. Metabolic seizures. Front Neurol 2021; 12: 640371.
  2. Jaume C, Plecko B. Treatable newborn and infant seizures due to inborn errors of metabolism. Epileptic Disord 2015; 17(3): 229-42.
  3. De Koning TJ. Amino acid synthesis deficiencies. J Inherit Metab Dis 2017; 40(4): 609-20.
  4. Koeberl DD, Pinto C, Brown T, Chen YT. Gene therapy for inherited metabolic disorders in companion animals. ILAR J 2009; 50(2): 122-7.
  5. Köker S, Sauer SW, Hoffmann GF, Müller I, Morath MA, Okun JG. Pathogenesis of CNS involvement in disorders of amino and organic acid metabolism. J Inherit Metab Dis 2008; 31(2): 194-204.
  6. Xu X, Ji D, Zhang Y, Gao X, Xu P, Li X, et al. Detection of phenylketonuria markers using a ZIF-67 encapsulated PtPd alloy nanoparticle (PtPd@ZIF-67)-based disposable electrochemical microsensor. ACS Appl Mater Interfaces 2019; 11(23): 20734-42.
  7. Yu JY, Pearl PL. Metabolic causes of epileptic encephalopathy. Epilepsy Res Treat 2013; 2013: 124934.
  8. Biancheri R, Cerone R, Rossi A, Schiaffino MC, Caruso U, Minniti G, et al. Early-onset cobalamin C/D deficiency: epilepsy and electroencephalographic features. Epilepsia 2002; 43(6): 616-22.
  9. Wasim M, Awan FR, Khan HN, Tawab A, Iqbal M, Ayesha H. Aminoacidopathies: prevalence, etiology, screening, and treatment options. Biochem Genet 2018; 56(1-2): 7-21.
  10. Perlman JM, Volpe JJ. Amino acids. In: Volpe JJ, Inder TE, editors. Volpe’s neurology of the newborn. 6th Amsterdam, Netherlands: Elsevier; 2017. p. 763-92.
  11. Gruenbaum SE, Dhaher R, Rapuano A, Zaveri HP, Tang A, De Lanerolle N, et al. Effects of branched-chain amino acid supplementation on spontaneous seizures and neuronal viability in a model of mesial temporal lobe epilepsy. J Neurosurg Anesthesiol 2019; 31(2): 247-56.
  12. Sandlers Y. The future perspective: metabolomics in laboratory medicine for inborn errors of metabolism. Transl Res 2017; 189: 65-75.
  13. Sharma S, Prasad AN. Inborn errors of metabolism and epilepsy: Current understanding, diagnosis, and treatment approaches. Int J Mol Sci 2017; 18(7): 1384.
  14. Rahman S, Footitt EJ, Varadkar S, Clayton PT. Inborn errors of metabolism causing epilepsy.
    Dev Med Child Neurol 2013; 55(1): 23-36.
  15. Lin CH, Chou IC, Hong SY. Genetic factors and the risk of drug-resistant epilepsy in young children with epilepsy and neurodevelopment disability: A prospective study and updated meta-analysis. Medicine (Baltimore) 2021; 100(12): E25277.
  16. Saleem TH, Nassar AY, El-Tallawy HN, Atta SA, Dahpy MA. Role of plasma amino acids profiles in pathogenesis and prediction of severity in patients with drug resistant epilepsy. Egypt J Hosp Med 2019; 77(1): 4681-7.
  17. Lee WT. Disorders of amino acid metabolism associated with epilepsy. Brain Dev 2011; 33(9): 745-52.
  18. Bascuñana P, Brackhan M, Leiter I, Keller H, Jahreis I, Ross TL, et al. Divergent metabolic substrate utilization in brain during epileptogenesis precedes chronic hypometabolism. J Cereb Blood Flow Metab 2020; 40(1): 204-13.
  19. Wasim A, Alvi JR, Sultan T. Succinic semialdehyde dehydrogenase deficiency – A rare cause of metabolic stroke. Pakistan J Neurol Pakistan J Neurol Sci Sci 2022; 17(2): 36-40.
  20. Didiasova M, Banning A, Brennenstuhl H, Jung-Klawitter S, Cinquemani C, Opladen T, et al. Succinic semialdehyde dehydrogenase deficiency: An update. Cells 2020; 9(2): 477.
  21. Parviza M, Vogel K, Gibson KM, Pearl PL. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. J Pediatr Epilepsy 2014; 3(4): 217-27.
  22. Wang P, Cai F, Cao L, Wang Y, Zou Q, Zhao P, et al. Clinical diagnosis and mutation analysis of four Chinese families with succinic semialdehyde dehydrogenase deficiency. BMC Med Genet 2019; 20(1): 88.
  23. Lee HHC, McGinty GE, Pearl PL, Rotenberg A. Understanding the molecular mechanisms of succinic semialdehyde dehydrogenase deficiency (SSADHD): Towards the development of SSADH-targeted medicine. Int J Mol Sci 2022; 23(5): 2606.
  24. Peters TMA, Engelke UFH, de Boer S, Reintjes JTG, Roullet JB, Broekman S, et al. Succinic semialdehyde dehydrogenase deficiency in mice and in humans: An untargeted metabolomics perspective. J Inherit Metab Dis 2023.
  25. DiBacco ML, Pop A, Salomons GS, Hanson E, Roullet JB, Gibson KM, et al. Novel ALDH5A1 variants and genotype: Phenotype correlation in SSADH deficiency. Neurology 2020; 95(19): e2675-82.
  26. Dean L. Methylenetetrahydrofolate reductase deficiency. Med Genet Summ 2016.
  27. Gales A, Masingue M, Millecamps S, Giraudier S, Grosliere L, Adam C, et al. Adolescence/adult onset MTHFR deficiency may manifest as isolated and treatable distinct neuro-psychiatric syndromes. Orphanet J Rare Dis 2018; 13(1): 29.
  28. Biesalski AS, Hoffjan S, Schneider R, Nguyen HP, Dekomien G, Lücke T, et al. Phoenix from the ashes: dramatic improvement in severe late-onset methylenetetrahydrofolate reductase (MTHFR) deficiency with a complete loss of vision. J Neurol 2022; 269(4): 2206-9.
  29. Poddar R, Paul S. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death. J Neurochem 2009; 110(3): 1095-106.
  30. Cordaro M, Siracusa R, Fusco R, Cuzzocrea S, Di Paola R, Impellizzeri D. Involvements of hyperhomocysteinemia in neurological disorders. Metabolites 2021; 11(1): 37.
  31. Sarecka-Hujar B. Is there a relation between 677C>T polymorphism in the MTHFR gene and the susceptibility to epilepsy in young patients? A meta-analysis. Brain Sci 2021; 11(10): 1327.
  32. Lu Y, Zhao S, He X, Yang H, Wang X, Miao C, et al. Novel compound heterozygous mutations of MTHFR Gene in a Chinese family with homocystinuria due to MTHFR deficiency. BMC Med Genomics 2022; 15(1): 271.
  33. Panigrahi DD, Patel S, Rajbhar S, Padhi P, Shah S, Nanda R, et al. Association of methylenetetrahydrofolate reductase gene polymorphism in mothers with adverse clinical outcomes in neonates. Cureus 2023; 15(4): e38001.
  34. Ni B, Qin M, Zhao J, Guo Q. A glance at transient hyperammonemia of the newborn: Pathophysiology, diagnosis, and treatment: A review. Medicine (Baltimore) 2022; 101(48): E31796.
  35. Pokorná P, Hronová K, Šíma M, Slanař O, Klement P, van den Anker JN, et al. Valproic acid-induced hyperammonemic encephalopathy in a full-term neonate: a brief review and case
    Eur J Clin Pharmacol 2017; 73(5): 647-9.
  36. Ribas GS, Lopes FF, Doen M, Vargas CR. Hyperammonemia in inherited metabolic diseases. Cell Mol Neurobiol 2022; 42:2593-610.
  37. Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E, et al. The concept of folic acid in health and disease. Molecules 2021; 26(12): 3731.
  38. Zhang C, Deng X, Wen Y, He F, Yin F, Peng J. First case report of cerebral folate deficiency caused by a novel mutation of FOLR1 gene in a Chinese patient. BMC Med Genet 2020; 21(1): 235.
  39. Han X, Cao X, Cabrera RM, Ramirez PAP, Zhang C, Ramaekers VT, et al. KDM6B variants may contribute to the pathophysiology of human cerebral folate deficiency. Biology (Basel) 2023; 12(1): 74.
  40. Ramaekers VT, Quadros EV. Cerebral folate deficiency syndrome: Early diagnosis, intervention and treatment strategies. Nutrients 2022; 14(15): 3096.
  41. Goldman ID. FOLR1-related cerebral folate transport deficiency. In: Adam MP, Feldman J, Mirzaa GM, editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993-2024.
  42. Rossignol DA, Frye RE. Cerebral folate deficiency, folate receptor alpha autoantibodies and leucovorin (Folinic Acid) treatment in autism spectrum disorders: A systematic review and meta-analysis. J Pers Med 2021; 11(11): 1141.
  43. Kempińska W, Korta K, Marchaj M, Paprocka J. Microcephaly in neurometabolic diseases. Children 2022; 9(1): 97.
  44. Yoganathan S, Srinivasaraghavan R, Chandran M, Kratz L, Koshy B, Sudhakar SV, et al. Attenuated form of glycine encephalopathy: An unusual cause of neurodevelopmental disorder. Ann Indian Acad Neurol 2021; 24(2): 261-4.
  45. Huynh MT, Landais E, De Sainte Agathe JM, Panchout A, De Blavous-Legendre Caroline DV, Bruel H. Novel homozygous GLDC variant causing late-onset glycine encephalopathy: A case report and updated review of the literature. Mol Genet Metab Reports 2023; 34: 100959.
  46. Bhumika S, Basalingappa KM, Gopenath TS, Basavaraju S. Glycine encephalopathy. Egypt J Neurol Psychiatr Neurosurg 2022; 58(1): 132.
  47. Van Hove JL, Coughlin II C, Swanson M, Hennermann JB, Adam MP, Feldman J, et al. Nonketotic hyperglycinemia. GeneReviews® 2019.
  48. Nowak M, Chuchra P, Paprocka J. Nonketotic hyperglycinemia: Insight into current therapies. J Clin Med 2022; 11(11): 3027.
  49. Kure S. Two novel laboratory tests facilitating diagnosis of glycine encephalopathy (nonketotic hyperglycinemia). Brain Dev 2011; 33(9): 753-7.
  50. Arif TB, Ahmed J, Malik F, Nasir S, Khan TM. Neonatal nonketotic hyperglycinemia: A rare case from Pakistan. Cureus 2020; 12(3): e7235. 
  51. Bejarano E, Rodríguez-Navarro JA. Autophagy and amino acid metabolism in the brain: implications for epilepsy. Amino Acids 2015; 47(1): 2113-26.
  52. Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8(1): 34.