Biomarkers of Hypoxic-Ischemic Encephalopathy in Newborns

Document Type : Scientific Review

Authors

1 Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

2 Dentistry Student, School of Dental Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Biomarkers are particles that are released from target organs during tissue hypoxia injury. Recognizing biomarkers released from the damaged brain helps physicians determine the extent of tissue damage and the use of protective techniques in clinical treatment.  Previous studies revealed that biomarkers such as brain-specific proteins (neuron-specific enolase (NSE), S100B, ubiquitincarboxy-terminal hydrolase-L1, total Tau) and cytokines, including IL-6, IL-1β, IL-10, IL-13, interferon-gamma, TNF alpha and brain-derived neurotrophic factor are useful in diagnosing hypoxic-ischemic encephalopathy (HIE) and predicting nerve growth outcomes. However, optimal sensitivity and specificity of these biomarkers have not been achieved, which has limited their clinical application. This review focuses on biomarkers such as lactate, LDH, NRBC, NSE, S100B, GFAP, CPK-BB, IL-6, NPBI, UCHL-1. More sensitive and accurate instruments such as brain imaging (such as brain MRI), brain function (such as NIRS, aEEG), and long-term neuroassay should be used in the future to confirm biomarkers of neonatal brain damage.

Keywords


  1. Vannucci R. “Hypoxia ischemia: pathogenesis and neuropathology,” in Neonatal perinatal medicine: diseases of the fetus and infant, 6th Edn, ed. Fanaroff A. (St. Louis, MO: Mosby), 1997: 856–891.
  2. Low JA, Lindsay BG, Derrick EJ. Threshold of metabolic acidosis associated with newborn complications. Am J Obstet Gynecol 1997; 177(6): 1391-4.
  3. MacDonald HM, Mulligan JC, Allen AC, Taylor PM. Neonatal asphyxia. I. Relationship of obstetric and neonatal complications to neonatal mortality in 38,405 consecutive deliveries. J Pediatr 1980; 96(5): 898-902.
  4. Finer NN, Robertson CM, Richards RT, Pinnell LE, Peters KL. Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome. J Pediatr 1981; 98(1): 112-7
  5. Martin RJ, Fanaroff AA, Walsh MC. Neonatal-perinatal medicine: diseases of the fetus and infant. St Louis: Elsevier/Mosby; 2011.
  6. Ennen CS, Huisman TA, Savage WJ, Northington FJ, Jennings JM, Everett AD,
    et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling. Am J Obstet Gynecol 2011; 205(3): 251.e1-7.
  7. Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 1976; 33(10): 696-705.
  8. Hellström-Westas L, Rosén I, Svenningsen NW. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed 1995; 72(1): F34-8.
  9. Thoresen M, Hellström-Westas L, Liu X, deVries LS. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 2010, 126(1): e131-e139.
  10. Chiesa C, Pellegrini G, Panero A, De Luca T, Assumma M, Signore F, etal. Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest 2003; 33(4): 352-8.
  11. Bejot Y, Mossiat C, Giroud M, Prigent-Tessier A, Marie C. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies. PLoS One 2011; 6(12): e29405.
  12. Vos PE, Lamers KJB, Hendriks JC,van Haaren M, BeemsT, Zimmerman C, etal. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 2004; 62(8): 1303-10.
  13. Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 2005; 103(1 Suppl): 61-8.
  14. Kecskes Z, Dunster KR, Colditz PB. NSE and S100 after hypoxiain the newborn pig. Pediatr Res 2005; 58(5): 953-7.
  15. Qian J, Zhou D, Wang YW. Umbilicalartery blood S100 betaprotein: atoolfortheearly identification of neonatalhypoxic- ischemicencephalopathy. Eur J Pediatr 2009; 168(1): 71-7.
  16. Ramaswamy V, Horton J, Vandermeer B, Buscemi N, Miller S, Yager J. Systematic review of biomarkers of brain injury intermneonatal encephalopathy. Pediatr Neurol 2009; 40(3): 215-26.
  17. Imam SS, Gad GI, Atef SH, Shawky MA. Cord blood brain derived neurotrophic factor: diagnostic and prognostic marker in fullterm newborns with perinatal asphyxia. Pak J Biol Sci 2009; 12(23): 1498-504.
  18. Douglas-Escobar M, Yang C, Bennett J, Shuster J, Theriaque D, Leibovici A, et al. A pilot study of novel biomarkers in neonates with hypoxic-ischemic encephalopathy. Pediatr Res 2010; 68(6): 531-6.
  19. Gazzolo D, Frigiola A, Bashir M, IskanderI, Mufeed H, Aboulgar H, et al. Diagnostic accuracy of S100B urinary testing at birth in full-term asphyxiated newborns to predict neonatal death. PLoS One 2009; 4(2): e4298.
  20. Massaro AN, Wu YW, Bammler TK, Comstock B, Mathur A, McKinstry RC, et al. Plasma Biomarkers of Brain Injury in Neonatal Hypoxic-Ischemic Encephalopathy. J Pediatr 2018; 194: 67-75.
  21. Yang L, Li D, Chen S. Hydrogen water reduces NSE, IL-6, and TNF-α levels in hypoxic-ischemic encephalopathy. Open Med (Wars) 2016; 11(1): 399-406.
  22. Graham EM, Everett AD, Delpech JC, Northington FJ. Blood biomarkers for evaluationof perinatal encephalopathy: state of the art. Curr Opin Pediatr 2018; 30(2): 199-203.
  23. Zhao X, Song S, Sun G, Zhang J, Strong R, Zhang L, et al. Cytoprotective role of haptoglobin in brain after experimental intracerebral hemorrhage. Acta Neurochir Suppl 2011; 111: 107-12.
  24. Zhu Y, Yun Y, Jin M, Li G, Li H, Miao P,
    et al. Identification of novel biomarkers for neonatal hypoxic-ischemic encephalopathy using iTRAQ. Ital J Pediatr 2020; 46(1): 67.
  25. Risso FM, Serpero LD, Zimmermann LJ, Gavilanes AW, Frulio R, Michetti F, et al. Perinatalasphyxia: kidneyfailure doesnot affect S100 Burinecon- centrations. Clin Chim Acta 2012; 413(1-2): 150-3.
  26. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 2004; 21(11): 1553-61.
  27. Roine RO, SomerH, Kaste M, Viinikka L, Karonen SL. Neurological outcome after out-of-hospital cardiac arrest. Prediction by cerebrospinal fluid enzyme analysis. Arch Neurol 1989; 46(7): 753-6.
  28. Hay E, Royds JA, Davies-Jones GA, Lewtas NA, Timperley WR, Taylor CB. Cerebrospinal fluid enolase in stroke. J Neurol Neurosurg Psychiatry 1984; 47(7): 724-9.
  29. Costine BA, Quebeda-Clerkin PB, Dodge CP, Harris BT, Hillier SC, Duhaime AC. Neuron-specific enolase, but not S100B or myelin basic protein, increases in peripheral blood corresponding to lesion volume after cortical impact in piglets. J Neurotrauma 2012; 29(17): 2689-95.
  30. Schmitt B, Bauersfeld U, Schmid ER, Tuchschmid P, Molinari L, Fanconi S, et al. Serum and CSF levels of neuron-specific enolase (NSE) in cardiac surgery with cardiopulmonary bypass: a marker of brain injury? Brain Dev 1998; 20(7): 536-9.
  31. Celtik C, Acunaş B,Oner N, Pala O. Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Dev. 2004; 26(6): 398-402.
  32. Utomo MT. Risk factors for birth asphyxia. Folia Medica Indonesiana 2011; 47(4): 211-4.
  33. Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, et al. BDNF stimulates migration of cerebellar granule cells. Development 2002; 129(6): 1435-42.
  34. Ciccoli L, Rossi V, Leoncini S, Signorini C, Paffetti P, Bracci R, et al. Iron release in erythrocytes and plasma non protein-bound iron in hypoxic and non hypoxic newborns. Free Radic Res 2003; 37(1): 51-8.
  35. Buonocore G, Perrone S, Longini M, Paffetti P, Vezzosi P, Gatti MG, et al. Non protein bound iron as early predictive marker of neonatal brain damage. Brain 2003; 126(Pt 5): 1224-30.
  36. Hasegawa K, Ichiyama T, Isumi H, Nakata M, Sase M, Furukawa S. NF-kappaB activation in peripheral blood mononuclear cells in neonatal asphyxia. Clin Exp Immunol 2003; 132(2): 261-4.
  37. Thilaganathan B, Athanasiou S, Ozmen S, Creighton S, Watson NR, Nicolaides KH. Umbilical cord blood erythroblast count as an index of intrauterine hypoxia. Arch Dis Child Fetal Neonatal Ed 1994; 70(3): F192-4.
  38. Antonucci R, Porcella A PM. Perinatal asphyxia in the term newborn | Request PDF. J Pediatr Neonatal Individ Med 2014; 3(2): 1-14.
  39. Oygür N, Sönmez Ö, Saka O, Yeǧin O. Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-α and interleukin-1β concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 1998; 79(3): F190-3.
  40. Aly H, Khashaba MT, El-Ayouty M, El-Sayed O, Hasanein BM. IL-1β, IL-6 and TNF-α and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev 2006; 28(3): 178-82.
  41. Bartha AI, Foster-Barber A, Miller SP, Vigneron DB, Glidden D V., Barkovich AJ,
    et al. Neonatal encephalopathy: Association of cytokines with MR spectroscopy and outcome. Pediatr Res 2004; 56(6): 960-6.
  42. Hagberg H, Gilland E, Bona E, Hanson LÅ, Hahn-Zoric M, Blennow M, et al. Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res 1996; 40(4): 603-9.
  43. Liu XH, Kwon D, Schielke GP, Yang GY, Silverstein FS, Barks JDE. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cereb Blood Flow Metab 1999; 19(10): 1099-108.
  44. Fujii EY, Kozuki M, Mu J, Ino Y, Ushioda N, Tomimatsu T, et al. Correlation of neuron-specific enolase and S100B with histological cerebral damage in fetal sheep after severe asphyxia. Brain Res 2004; 1018(1): 136-40.
  45. Michetti F, Dell’Anna E, Tiberio G, Cocchia D. Immunochemical and immunocytochemical study of S-100 protein in rat adipocytes. Brain Res 1983; 262(2): 352-6.
  46. Johnsson P, Lundqvist C, Lindgren A, Ferencz I, Alling C, Ståhl E. Cerebral complications after cardiac surgery assessed by S-100 and NSE levels in blood. J Cardiothorac Vasc Anesth 1995; 9(6): 694-9.
  47. Michetti F, Gazzolo D. S100B protein in biological fluids: a tool for perinatal medicine. Clin Chem 2002; 48(12): 2097-104.
  48. Douglas-Escobar M, Weiss MD. Biomarkers of hypoxic-ischemic encephalopathy in newborns. Front Neurol 2012; 3(144): 1-5.